Advertisement Remove all ads

Prove that ∫ B a ƒ ( X ) D X = ∫ B a ƒ ( a + B − X ) D X and Hence Evaluate ∫ π 3 π 6 D X 1 + √ Tan X - Mathematics

Question

Sum

Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`

Solution

let a + b - x = t

⇒ dx = -dt

when x = a,t = b and x = b,t = a

`int_a^b ƒ("x") d"x" = -int_b^aƒ(a + b -"t")d"t"`

= `int_a^bƒ(a + b -"t")d"t"              ...[∵ int_a^b ƒ("x") d"x" = -int_b^a ƒ("x") d"x"]`

= `int_a^bƒ(a + b -"x")d"x"            ...[∵ int_a^b ƒ("x") d"x" = int_a^b ƒ("t") d"t"]`

Hence proved.

let `I = int_(π/6)^(π/3) (d"x")/(1+ sqrt(tan "x")) = int_(π/6)^(π/3)(sqrt(cos"x")d"x")/(sqrt(cos"x")+ sqrt(sin"x"))`           .....(ii)

Then, using the property from (i)

`I = int_(π/6)^(π/3) (sqrtcos(π/3 + π/6 - "x") d"x")/ (sqrtcos(π/3 + π/6 - "x") + sqrtsin(π/3 + π/6 - "x"))`

= `int_(π/6)^(π/3) (sqrt(sin"x")d"x")/(sqrt(sin"x") + sqrt(cos"x")`                                                   ......(iii)

Adding (ii) and (iii), we get

`2I = int_(π/6)^(π/3)d"x" = ["x"](π/3)/(π/6) = π/3 - π/6 = π/6`

⇒ `I = π/12`

Concept: Definite Integrals Problems
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×