Prove That: 2 Sin 68 ∘ Cos 10 ∘ − 2 Cot 15 ∘ 5 Tan 75 ∘ = ( 3 Tan 45 ∘ T a N 20 ∘ Tan 40 ∘ Tan 50 ∘ Tan 70 ∘ ) 5 = 1 - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 

Advertisement Remove all ads

Solution

LHS = `(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5  tan 75^circ) = ((3  tan 45^circ tan 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5`

`=(2 sin 68^circ)/sin(90^circ - 22^circ) - (2  cot 15^circ)/(5 cot (90^circ - 75^circ)) - 3xx1xxcot(90^circ-20^circ)xxcot(90^circ-40^circ)xxtan 50^circxxtan 70^circ`

`= 2 - 2/5 = (3xx1/(tan 70^circ)xx1/(tan 50)^circxxtan 70^circ )/5`

`= 2 - 2/5 = 3/5`

`=( 10 - 2 - 3)/5`

`= 5/5`

 = 1

= RHS 

Concept: Trigonometry
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.3 | Page 313

Video TutorialsVIEW ALL [2]

Share
Notifications

View all notifications


      Forgot password?
View in app×