Advertisement Remove all ads
Advertisement Remove all ads
Sum
Prove that : `2sin^-1 (3/5) -tan^-1 (17/31) = pi/4.`
Advertisement Remove all ads
Solution
LHS: `2sin^-1 ((3)/(5))-tan^-1 ((17)/(31))`
`= 2tan^-1(3/4) - tan^-1(17/31)`
= `tan^-1 ((6/(4))/(1-9/16)) - tan^-1 (17)/(31)`
⇒ = `tan^-1 (24)/(7) - tan^-1 (17)/(31)`
= `tan^-1 ((24/7 - 17/34)/(1+ 24/7 xx 17/31))`
= `tan^-1 ((625)/625)`
= `tan^-1 (1)`
= `pi/(4) = "RHS"`.
Concept: Proof Derivative X^n Sin Cos Tan
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads