Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for All N ∈ N . - Mathematics

Prove that 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all \[\in\] N .

 
Advertisement Remove all ads

Solution

\[Let p\left( n \right): 1 + 2 + 2^2 + . . . + 2^n = 2^{n + 1} - 1 \forall  n \in N\]
\[\text{ Step I: For } n = 1, \]
\[LHS = 1 + 2^1 = 3\]
\[RHS = 2^{1 + 1} - 1 = 2^2 - 1 = 4 - 1 = 3\]
\[As, LHS = RHS\]
\[\text{ So, it is true for n } = 1 . \]
\[\text{ Step II: For n } = k, \]
\[\text{ Let } p\left( k \right): 1 + 2 + 2^2 + . . . + 2^k = 2^{k + 1} - 1\text{  be true }  \forall   k \in N\]
\[\text{ Step III: For } n = k + 1, \]
\[LHS = 1 + 2 + 2^2 + . . . + 2^k + 2^{k + 1} \]
\[ = 2^{k + 1} - 1 + 2^{k + 1} \left(\text{  Using step } II \right)\]
\[ = 2 \times 2^{k + 1} - 1\]
\[ = 2^{k + 1 + 1} - 1\]
\[ = 2^{k + 2} - 1\]
\[RHS = 2^\left( k + 1 \right) + 1 - 1 = 2^{k + 2} - 1\]
\[As, LHS = RHS\]
\[\text{ So, it is also true for n } = k + 1 .\]

Hence, 1 + 2 + 22 + ... + 2n = 2n+1 - 1 for all n \[\in\] N .

 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 12 Mathematical Induction
Exercise 12.2 | Q 30 | Page 28
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×