Advertisement Remove all ads

Prove the Following Trigonometric Identities. `Sqrt((1 + Sin A)/(1 - Sin A)) = Sec a + Tan a - Mathematics

Prove the following trigonometric identities.

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`

Advertisement Remove all ads

Solution

We need to prove `sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`

Here, rationalising the L.H.S, we get

`sqrt((1 + sin A)/(1 - sin A)) = sqrt((1+ sin A)/(1 - sin A)) xx sqrt((1 + sin A)/(1 + sin A))`

`= sqrt((1 + sin A)^2/(1 - sin^2 A)`

Further using the property, `sin^2 theta + cos^2 theta = 1` we get

So,

`sqrt((1 - cos A)/(1 - cos^2 A)) = sqrt((1 -  cos A)^2/sin^2 A)`

`= (1 - cos A)/sin A`

`= 1/sin A - cos A/sin A`

`=cosec A  - cot A`

Hence proved.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 37 | Page 44
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×