Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Prove the following trigonometric identities.
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Advertisement Remove all ads
Solution
We need to prove `sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Here, rationalising the L.H.S, we get
`sqrt((1 + sin A)/(1 - sin A)) = sqrt((1+ sin A)/(1 - sin A)) xx sqrt((1 + sin A)/(1 + sin A))`
`= sqrt((1 + sin A)^2/(1 - sin^2 A)`
Further using the property, `sin^2 theta + cos^2 theta = 1` we get
So,
`sqrt((1 - cos A)/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A)`
`= (1 - cos A)/sin A`
`= 1/sin A - cos A/sin A`
`=cosec A - cot A`
Hence proved.
Concept: Trigonometric Identities
Is there an error in this question or solution?