CBSE Class 10CBSE
Share
Notifications

View all notifications

Prove the Following Trigonometric Identities Sec4 A(1 − Sin4 A) − 2 Tan2 A = 1 - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1

Solution

We have to prove sec4 A(1 − sin4 A) − 2 tan2 A = 1

We know that `sin^2 A + cos^2 A = 1`

So,

`sec^4 A (1 - sin^4 A) - 2tan^2 A = 1/cos^4 A (1 - sin^4 A) - 2 sin^2 A/cos^2 A`

`= (1/cos^4 A - sin^4 A/cos^4 A) - 2 (sin^2 A)/(cos^2 A)`

`= ((1 - sin^4 A)/cos^4 A) - 2 (sin^2 A)/cos^2 A`

`= ((1 - sin^2 A)(1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`

`= (cos^2 A (1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`

`= (1 + sin^2 A - 2 sin^2 A)/cos^2 A`

`= (1 - sin^2 A)/cos^2 A`

`= cos^2 A/cos^2 A`

= 1

Hence proved.

  Is there an error in this question or solution?

APPEARS IN

Solution Prove the Following Trigonometric Identities Sec4 A(1 − Sin4 A) − 2 Tan2 A = 1 Concept: Trigonometric Identities.
S
View in app×