Prove the Following Trigonometric Identities. (Cot a - Cos A)/(Cot a + Cos A) = (Cosec a - 1)/(Cosec a + 1) - Mathematics

Advertisements
Advertisements

Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

Advertisements

Solution

In the given question, we need to prove `(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`

Here, we will first solve the LHS.

Now using `cot theta = (cos theta)/(sin theta)`, we get

`(cot A - cos A)/(cot A + cos A) = (cos A/sin A - cos A)/(cos A/sin A + cos A)`

`= ((cos A - cos Asin A)/sin A)/((cos A + cos A sin A)/sin A)`

On further solving by taking the reciprocal of the denominator, we get,

`((cos A - cos Asin A)/sin A)/((cos A + cos Asin A)/sin A) = ((cos A - cos AsinA)/sin A) (sin A/(cos A + cos A sin A))`

`= (cos A - cos AsinA)/(cos A + cos Asin A)`

Now, taking `cos A sin A` common from both the numerator and the denominator, we get

`(cos A - cos A sin A)/(cos A + cos Asin A) = (cos A sin A (1/sin A -1 ))/(cos A sin A (1/sin A + 1))`

`= ((1/sin A - 1))/((1/sin A + 1))`

`= (cosec A - 1)/(cosec A + 1)`      `("using"  1/sin theta = cosec theta)`

Hence proved

 

  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 46 | Page 45

RELATED QUESTIONS

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


`(1+tan^2A)/(1+cot^2A)=` ______.


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove.
`(cosecA)/(cosecA-1)+(cosecA)/(cosecA+1)=2sec^2A`


prove.
`secA/(secA+1)+secA/(secA-1)=2cosec^2A`


Prove.
`sqrt((1-sinA)/(1+sinA))=cosA/(1+sinA)`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Find A if tan 2A = cot (A-24°).


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


If x = a tan θ and y = b sec θ then


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

cos θ. sec θ = ?


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


If cos θ = `24/25`, then sin θ = ?


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that cot2θ × sec2θ = cot2θ + 1


If 3 sin θ = 4 cos θ, then sec θ = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


`1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, then find the value of θ.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications



      Forgot password?
Use app×