Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Advertisement Remove all ads
Solution
We need to prove cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Solving the L.H.S, we get
`cosec^6 theta = (cosec^2 theta)^3`
`= (1 + cot^2 theta)^3` .......`(1 + cot^2 theta = cosec^2 theta)`
Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2` we get
`(1 + cot^2 theta)^3 = 1 + cot^6 theta + 3(1)^2 (cot^2 theta) + 3(1) (cot^2 theta)^2`
`= 1 + cot^6 theta + 3 cot^2 theta + 3 cot^4 theta`
`= 1 + cot^6 theta + 3 cot^2 theta (1 + cot^2 theta)`
`= 1 + cot^6 theta + 3 cot^2 theta cosec^2 theta` `(using 1 + cot^2 theta = cosec^2 theta)`
Hence proved.
Concept: Trigonometric Identities
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads