Prove the Following Trigonometric Identities. (Cos Theta)/(Cosec Theta + 1) + (Cos Theta)/(Cosec Theta - 1) = 2 Tan Theta - Mathematics

Advertisements
Advertisements

Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

Advertisements

Solution

In the given question, we need to prove `(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

Using the identity `a^2 - b^2  = (a + b)(a - b)`

`cos theta/((cosec theta + 1)) + cos theta/(cosec theta - 1) = (cos theta(cosec theta - 1)+ cos theta(cosec theta + 1))/(cosec^2 theta - 1)`

`= (cos theta (cosec theta - 1 + cosec theta + 1))/(cosec^2 theta -1)  = (cos theta(2 cosec theta))/cot^2 theta`

`= ((2 cos theta)(1/sin theta))/((cos^2 theta/sin^2 theta))`

`= 2 ((cos theta)/(sin theta))(sin^2 theta/cos^2 theta)`

`= 2 sin theta/cos theta`

`= 2 tan theta`

Hence proved.

  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 52 | Page 45

RELATED QUESTIONS

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Prove.
(cosec A - sin A) (sec A - cos A) (tan A + cot A) = 1


Prove:

`(costhetacottheta)/(1+sintheta)=cosectheta-1`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


Write the value of cos1° cos 2°........cos180° .


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


9 sec2 A − 9 tan2 A is equal to


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


If cosθ = `5/13`, then find sinθ. 


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Choose the correct alternative:

sec 60° = ?


Choose the correct alternative:

cot θ . tan θ = ?


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cos θ = `24/25`, then sin θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications



      Forgot password?
Use app×