Prove the Following Trigonometric Identities. 1 + Cot 2 Theta/(1 + Cosec Theta) = Cosec Theta - Mathematics

Advertisements
Advertisements

Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Advertisements

Solution

In the given question, we need to prove `1 + cot^2 theta/(1 + cosec theta) = cosec theta`

Using `cot theta = cos theta/sin theta` and `cosec theta = 1/sin theta` We get

`1 + cot^2 theta/(1 +  cosec theta) = (1 = cosec theta +  cot^2 theta)/(1 + cosec theta)`

`= ((1 + 1/sin theta + cos^2 theta/sin^2 theta))/((1 + 1/sin theta))`

` = (((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta))/(((sin theta + 1)/sin theta))`

Further, using the property `sin^2 theta + cos^2 theta = 1`

We get

`((sin^2 theta + sin theta + cos^2 theta)/sin^2 theta)/((sin theta + 1)/sin theta) = ((1 + sin theta)/sin^2 theta)/((sin theta + 1)/sin theta)`

`= (1 + sin theta/sin^2 theta)((sin theta)/(1 + sin theta))`

`= 1/sin theta`

`= cosec theta`

Hence proved.

  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 51 | Page 45
RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 51 | Page 45

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`


Prove.
`sqrt((1-cosA)/(1+cosA))=cosecA-cotA`


Prove.
 2 sin2A + cos4A = 1 + sin4


If sin A + cos A = m and sec A + cosec A = n, show that: n (m2 - 1) = 2m


Show that:
tan10° tan15° tan75° tan80° = 1


Prove the following identitie:

`sqrt((1-cosA)/(1+cosA))=sinA/(1+cosA)`


Prove the following identities:

`(1+(secA-tanA)^2)/(cosecA(secA-tanA))=2tanA`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If tanθ `= 3/4` then find the value of secθ.


Simplify : 2 sin30 + 3 tan45.


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


The value of sin2 29° + sin2 61° is


9 sec2 A − 9 tan2 A is equal to


(sec A + tan A) (1 − sin A) = ______.


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that: tan (55° + x) = cot (35° - x)


If sin θ = `1/2`, then find the value of θ. 


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If x = a tan θ and y = b sec θ then


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


sin2θ + sin2(90 – θ) = ?


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Choose the correct alternative:

tan (90 – θ) = ?


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


If 1 – cos2θ = `1/4`, then θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications



      Forgot password?
Use app×