Maharashtra State Board course SSC (English Medium) Class 10th Board Exam
Share
Notifications

View all notifications

Prove the Following. Tan θ S E C θ + 1 = S E C θ − 1 Tan θ - Geometry

Login
Create free account


      Forgot password?

Question

Prove the following.
\[\frac{\tan\theta}{sec\theta + 1} = \frac{sec\theta - 1}{\tan\theta}\]

Solution

\[\frac{\tan\theta}{\sec\theta + 1}\]
\[ = \frac{\tan\theta}{\sec\theta + 1} \times \frac{\sec\theta - 1}{\sec\theta - 1}\]
\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\sec^2 \theta - 1}\]
\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\tan^2 \theta} \left( 1 + \tan^2 \theta = \sec^2 \theta \right)\]
\[ = \frac{\sec\theta - 1}{\tan\theta}\]

  Is there an error in this question or solution?

APPEARS IN

 Balbharati Solution for Balbharati Class 10 Mathematics 2 Geometry (2018 to Current)
Chapter 6: Trigonometry
Problem set 6 | Q: 5.08 | Page no. 138
Solution Prove the Following. Tan θ S E C θ + 1 = S E C θ − 1 Tan θ Concept: Application of Trigonometry.
S
View in app×