Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Prove the following identities, where the angles involved are acute angles for which the expressions are defined
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove that `(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Advertisement Remove all ads
Solution
L.H.S = `(sin theta-2sin^3theta)/(2cos^3theta -costheta)`
`= (sintheta(1-sin^2theta))/(costheta(2cos^2theta-1))`
`= (sinthetaxx(1-2sin^2theta))/(costhetaxx{2(1-sin^2theta)-1})`
`= (sin thetaxx(1-2sin^2theta))/(costhetaxx(1-2sin^2theta))`
= `tantheta` = R.H.S
Concept: Trigonometric Identities
Is there an error in this question or solution?