Prove `cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Advertisement Remove all ads
Solution
Consider `((sqrt(1+sinx) + sqrt(1-sin x))/(sqrt(1+sinx) - sqrt(1-sinx))) = x/2` `x in (0, pi/4)`
`= ((sqrt(1+sinx)+ sqrt(1-sinx))^2)/((sqrt(1+sin x))^2 - (sqrt(1-sin x))^2)` (by rationalizing)
`= ((1+sinx) + (1-sinx)+2sqrt((1+sinx)(1-sinx)))/(1+sinx - 1 + sinx)`
`=(2(1+sqrt(1-sin^2x)))/(2sin x) = (1+ cosx)/sin x = (2 cos^2 x/2)/(2sin x/2 cos x/2)`
`= cot x/2`
:. L.H.S = `cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = cot^(-1) (cot x/2) = x/2 = R.H.S`
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads