Advertisement Remove all ads

Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β

Advertisement Remove all ads

Solution

Let ∠XOP and ∠XOQ be in standard position and m∠XOP = - α   ,m∠XOQ = β

Take a point A on ray OP and a point B on ray OQ such that OA = OB = 1.

Since cos (- α) = cos α

and sin (- α) = - sin α,

A is (cos (- α), sin (- α)),

i.e. (cos α, - sin α)

B is (cos β, sin β)

∴ `bar"OA" = ("cos"  alpha)bar"i" - ("sin"  alpha).bar"j" + 0.bar"k"`

`bar"OB" = ("cos"  beta)bar"i" - ("sin"  beta).bar"j" + 0.bar"k"`

`∴ bar"OA" xx bar"OB" = |(hat"i",hat"j",hat"k"),("cos" alpha, - "sin"  alpha, 0),("cos" beta, "sin" beta, 0)|`

= (cos α sin β + sin α cos β)`bar"k"` ....(1)

The angle between `bar"OA"  "and"  bar"OB"` is α + β.

Also, `bar"OA", `bar"OB"` lie in the XY-plane.

∴ the unit vector perpendicular to `bar"OA"` and `bar"OB"` is `bar"k"`.

∴ `bar"OA" xx bar"OB" = ["OA"."OB" "sin"(alpha + beta)]bar"k"`

= sin (α + β) . `bar"k"`      ...(2)

∴ from (1) and (2),

sin (α + β) = sin α cos β + cos α  sin β

Concept: Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×