HSC Science (General) 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - Prove that: ∫2a0f(x)dx=∫a0f(x)dx+∫a0f(2a−x)dx - HSC Science (General) 12th Board Exam - Mathematics and Statistics

Question

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`

Solution

`LHS=int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx.........(1)`

Substitute x = a + t in the second integral

dx=dt

When x = a, t = 0.

When x = 2a, t = a.

`thereforeint_a^(2a)f(x)dx=int_0^af(a+t)dt`

`=int_0^af(a+(a-t))dt (therefore int_0^af(x)dx=int_0^a f(a-x)dx)`

 

`=int_0^af(2a-t)dt`

 

`int_a^(2a)f(x)dx=int_0^af(2a-x)dx (therefore int_0^af(t)dt=int_0^af(x)dx)`

Using the above in (1), we get

`int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx`

`=int_0^af(x)dx+int_0^af(2a-x)dx=RHS ("Proved")`

 

Is there an error in this question or solution?

APPEARS IN

 2015-2016 (March) (with solutions)
Question 6.1.1 | 3 marks

Reference Material

Solution for question: Prove that: ∫2a0f(x)dx=∫a0f(x)dx+∫a0f(2a−x)dx concept: Properties of Definite Integrals. For the courses HSC Science (General) , HSC Science (Computer Science), HSC Science (Electronics), HSC Arts, HSC Commerce (Marketing and Salesmanship), HSC Commerce
S