HSC Science (Computer Science) 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - Evaluate :∫π0 (xsinx)/(1+sinx)dx - HSC Science (Computer Science) 12th Board Exam - Mathematics and Statistics

Question

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`

Solution

Let `I=int_0^pi(xsinx)/(1+sinx)dx`

`=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x))dx [because int_0^a f(x)dx=int_0^af(a-x)dx]`

 

`=int_0^pi((pi-x)sinx)/(1+sinx)dx`

 

`=int_0^pi(pisinx)/(1+sinx)dx-I`

 

`I=int_0^pi(pisinx)/(1+sinx)dx-I`

 

`2I=int_0^pi(pisinx.(1-sinx))/((1+sinx)(1-sinx))dx`

 

`2I=int_0^pi(pisinx.(1-sinx))/(1-sin^2x)dx`

 

`(2I)/pi=int_0^pi(sinx.(1-sinx))/cos^2xdx`

 

`(2I)/pi=int_0^pi(sinx.-sin^2x)/cos^2xdx`

`(2I)/pi=int_0^pi(sinx)/cos^2xdx-int_0^pi(sin^2x)/cos^2xdx`

 

`(2I)/pi=int_0^pisecx.tanxdx-int_0^pitan^2xdx`

 

`(2I)/pi=[secx]_0^pi-int_0^pi(sec^2x-1)dx`

 

`(2I)/pi=[secpi-sec0]-int_0^pisec^2x.dx+int_0^pi1dx`

`(2I)/pi=[-1-1]-[tanx]_0^pi_[x]_0^pi`

`(2I)/pi=[-2]-[tanpi-tan0]+pi`

`(2I)/pi=[-2]-0+pi`

`thereforeI=((pi-2)pi)/2`

Is there an error in this question or solution?

APPEARS IN

 2014-2015 (March) (with solutions)
Question 5.2.3 | 4 marks

Reference Material

Solution for question: Evaluate :∫π0 (xsinx)/(1+sinx)dx concept: null - Properties of Definite Integrals. For the courses HSC Science (Computer Science), HSC Science (General) , HSC Arts, HSC Science (Electronics), HSC Commerce, HSC Commerce (Marketing and Salesmanship)
S