\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to 0} \left[ \frac{\sin 3x - \sin x}{\sin x} \right]\]
\[= \lim_{x \to 0} \left[ \frac{2 \cos\left( \frac{3x + x}{2} \right) \sin\left( \frac{3x - x}{2} \right)}{\sin x} \right] \left[ \because \sin C - \sin D = 2\cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \cos2x . \sin x}{\sin x} \right]\]
\[ = 2\cos0\]
\[ = 2\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads