Advertisement Remove all ads

P Given 4 Cos θ − Sin θ 2 Cos θ + Sin θ What is the Value of C O S E C 2 θ − Sec 2 θ C O S E C 2 θ + Sec 2 θ - Mathematics

Sum

Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]

Advertisement Remove all ads

Solution

Given: ` tan θ= 1/sqrt5`

We know that: `tan θ=("Prependicular")/("Base")` 

`("Prependicular")/("Base")=1/sqrt5`  

`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)` 

`"Hypotenuse"=sqrt(1+5)`

`"Hypotenuse"=sqrt6` 

Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` 

=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)` 

= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)` 

= `(6/1-6/5)/(6/1+6/5)` 

=`(24/5)/(36/5)` 

=`2/3` 

Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3` 

 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 10 Trigonometric Ratios
Q 8 | Page 55
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×