Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

P Find N in the Binomial ( 3 √ 2 + 1 3 √ 3 ) N , If the Ratio of 7th Term from the Beginning to the 7th Term from the End is 1 6 - Mathematics

Find n in the binomial \[\left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n\] , if the ratio of 7th term from the beginning to the 7th term from the end is  \[\frac{1}{6}\]

 
 
Advertisement Remove all ads

Solution

In the binomail expansion of  \[\left( \sqrt[3]{2} + \frac{1}{\sqrt[3]{3}} \right)^n\] \[\left[ \left( n + 1 \right) - 7 + 1 \right]^{th}\]  i.e., (n − 5)th term from the beginning is the 7th term from the end.
Now,

\[T_7 =^n C_6 \left( \sqrt[3]{2} \right)^{n - 6} \left( \frac{1}{\sqrt[3]{3}} \right)^6 =^n C_6 \times 2^\frac{n}{3} - 2 \times \frac{1}{3^2}\]

\[\text{ And, }\]

\[ T_{n - 5} =^n C_{n - 6} \left( \sqrt[3]{2} \right)^6 \left( \frac{1}{\sqrt[3]{3}} \right)^{n - 6} =^n C_6 \times 2^2 \times \frac{1}{3^\frac{n}{3} - 2}\]

It is given that,

\[\frac{T_7}{T_{n - 5}} = \frac{1}{6}\]

\[ \Rightarrow \frac{{}^n C_6 \times 2^\frac{n}{3} - 2 \times \frac{1}{3^2}}{{}^n C_6 \times 2^2 \times \frac{1}{3^\frac{n}{3} - 2}} = \frac{1}{6}\]

\[ \Rightarrow 2^\frac{n}{3} - 2 - 2 \times 3^\frac{n}{3} - 2 - 2 = \frac{1}{6}\]

\[ \Rightarrow \left( \frac{1}{6} \right)^{4 - \frac{n}{3}} = \frac{1}{6}\]

\[ \Rightarrow 4 - \frac{n}{3} = 1\]

\[ \Rightarrow n = 9\]

Hence, the value of is 9.

 
 

 

 
Concept: Rth Term from End
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 38 | Page 40
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×