Advertisement Remove all ads

# P Find the Coefficient Of: (Vii) a 5 B 7 in the Expansion of ( a − 2 B ) 12 - Mathematics

Find the coefficient of:

(vii) $a^5 b^7$  in the expansion of  $\left( a - 2b \right)^{12}$

Advertisement Remove all ads

#### Solution

Suppose a5 b7 occurs at the (r + 1)th term in the given expression.
Then, we have:

$T_{r + 1} = ^{12}{}{C}_r a^{12 - r} ( - 2b )^r$
$= ( - 1 )^r {12}{}{C}_r \left( a^{12 - r} \right) \left( b^r \right)\left( 2^r \right)$
$\text{ For this term to contain } a^5 b^7 , \text{ we must have: }$
$12 - r = 5$
$\Rightarrow r = 7$
$\therefore \text{ Required coefficient } = ( - 1 )^7 {12}{}{C}_7 \left( 2^7 \right) = - \frac{12 \times 11 \times 10 \times 9 \times 8 \times 128}{5 \times 4 \times 3 \times 2} = - 101376$

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 18 Binomial Theorem
Exercise 18.2 | Q 9.7 | Page 37
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?