Advertisement Remove all ads

P and Q are two points on the ellipse x2a2+y2b2 = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = ππ2 - Mathematics and Statistics

Sum

P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`

Advertisement Remove all ads

Solution

Given equation of the ellipse is `x^2/"a"^2 + y^2/"b"^2` = 1

θ1 and θ2 are the eccentric angles of tangent.

∴ Equation of tangent at point P is

`x/"a"costheta_1 + y/"b"sintheta_1` = 1  ...(i)

∴ Equation of tangent at point Q is

`x/"a"costheta_2 + y/"b"sintheta_2` = 1

θ1 + θ2 = `π/2`    ...[Given]

∴ θ2 = `pi/2 - theta_1`

`x/"a"cos(pi/2 - theta_1) + y/"b"sin(pi/2 - theta_1)` = 1

∴ `x/"a"sintheta_1  +  y/"b"costheta_1` = 1   ...(ii)

From (i) and (ii), we get

`x/"a"costheta_1 + y/"b"sintheta_1  = x/"a"sintheta_1 + y/"b"costheta_1`

Let M(x1, y1) be the point of intersection of the tangents.

∴ `x_1/"a" costheta_1 + y_1/"b" sintheta_1 = x_1/"a" sintheta_1 + y_1/"b"costheta_1`

∴ `x_1/"a"(costheta_1 - sintheta_1) = y_1/"b"(costheta_1 - sintheta_1)`  ...(iii)

If cos θ1 – sin θ1 = 0,

cosθ= sin θ1

∴ tan θ1 = 1

∴ θ1 = `pi/4`

Since θ1 + θ2 = `pi/2`,  θ2 = `pi/2 - pi/4 = pi/4` 

i.e., points P and Q coincide, which is not possible, as P and Q are two different points.

∴ cos θ1 – sin θ1 ≠ 0

Dividing equation (iii) by (cos θ1 – sin θ1), we get

`x_1/"a" = y_1/"b"`

∴ bx1 – ay1 = 0

∴ bx – ay = 0, which is the required equation of locus of point M.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×