Maharashtra State BoardHSC Arts 12th Board Exam
Advertisement Remove all ads

Obtain the differential equation by eliminating the arbitrary constants from the following equation: y = c1e2x + c2e5x - Mathematics and Statistics

Sum

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 

Advertisement Remove all ads

Solution

y = c1e2x + c2e5x   ....(1)

Differentiating twice w.r.t. x, we get

`"dy"/"dx" = "c"_1"e"^(2"x") xx 2 + "c"_2"e"^(5"x") xx 5`

∴ `"dy"/"dx" = 2"c"_1"e"^(2"x") + 5"c"_2"e"^(5"x")`       ....(2)

and `("d"^2"y")/"dx"^2 = 2"c"_1"e"^(2"x") xx 2 + 5"c"_2"e"^(5"x") xx 5`

∴ `("d"^2"y")/"dx"^2 = 4"c"_1"e"^(2"x") + 25"c"_2"e"^("5x")`      .....(3)

The equations (1), (2) and (3) are consistent in c1e2x and c2e5x  

∴ determinant of their consistency is zero.

∴ `|("y",1,1),("dy"/"dx",2,5),(("d"^2"y")/"dx"^2,4,25)| = 0`

∴ y(50 - 20) - `1(25"dy"/"dx" - 5 ("d"^2"y")/"dx"^2) + 1 (4"dy"/"dx" - 2("d"^2"y")/"dx"^2) = 0`

∴ 30y - 25`"dy"/"dx" + 5("d"^2"y")/"dx"^2 + 4 "dy"/"dx" - 2("d"^2"y")/"dx"^2 = 0`

∴ `3("d"^2"y")/"dx"^2 - 21"dy"/"dx" + 30"y" = 0`

∴ `("d"^2"y")/"dx"^2 - 7"dy"/"dx" + 10"y" = 0`

This is the required D.E.

Notes

[Note: Answer in the textbook is incorrect.]

Concept: Formation of Differential Equations
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×