Advertisement Remove all ads
Advertisement Remove all ads
Sum
निम्नलिखित युगपत समीकरणों को क्रेमर की पद्धति से हल कीजिए।
4m + 6n = 54; 3m + 2n = 28
Advertisement Remove all ads
Solution
4m + 6n = 54 ............(I)
3m + 2n = 28 ............(II)
यहाँ, a1 = 4, b1 = 6 व c1 = 54 तथा
a2 = 3, b2 = 2, c2 = 28.
D = `|("a"_1, "b"_1), ("a"_2, "b"_2)| = |(4, 6), (3, 2)|`
= (4 × 2) − (6 × 3)
= 8 − 18
= − 10
`"D"_"m" = |("c"_1, "b"_1), ("c"_2, "b"_2)| = |(54, 6), (28, 2)|`
= (54 × 2) − (6 × 28)
= 108 − 168
= − 60
`"D"_"n" = |("a"_1, "c"_1), ("a"_2, "c"_2)| = |(4, 54), (3, 28)|`
= (4 × 28) − (54 × 3)
= 112 − 162
= − 50
क्रेमर पद्धति के अनुसार,
m = `"D"_"m"/"D"` तथा n = `"D"_"n"/"n"` .............(सूत्र)
∴ m = `(-60)/(-10)` तथा n = `(-50)/(-10)` ...........(मान प्रतिस्थापित करने पर)
∴ m = 6 तथा n = 5
∴ दिए गए समीकरणों का हल (m, n) = (6, 5) है।
Concept: निशच्यक पद्धति (क्रेमर की पद्धति) Determinant Method (Crammer’s Method)
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads