Molecularity of a reaction _____________. - Chemistry

Advertisements
Advertisements
MCQ
Fill in the Blanks

Molecularity of a reaction _____________.

Options

  • cannot be less than 2

  • can have fractional values

  • can be zero

  • is always a whole number

Advertisements

Solution

Molecularity of a reaction is always a whole number.

Explanation:

Molecularity means minimum no. of atoms molecules or ions which undergo collision for the conversion of reactant to Product. So it is a whole no. Cannot be fractional or negative.

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Define "zero order reaction".


In a first order reaction x → y, 40% of the given sample of compound remains unreacted in 45 minutes. Calculate rate constant of the reaction.


A → B is a first order reaction with rate 6.6 × 10-5m-s-1. When [A] is 0.6m, rate constant of the reaction is

  • 1.1 × 10-5s-1
  • 1.1 × 10-4s-1
  • 9 × 10-5s-1
  • 9 × 10-4s-1

A reaction is second order in A and first order in B.

(i) Write the differential rate equation.

(ii) How is the rate affected on increasing the concentration of A three times?

(iii) How is the rate affected when the concentrations of both A and B are doubled?

 


What is pseudo first order reaction? Give one· example of it.


Write molecularity of the following reaction:

2NO(g)+O2(g)→2NO2(g)


For a reaction: 

Rate = k

(i) Write the order and molecularity of this reaction.

(ii) Write the unit of k.


For the first order thermal decomposition reaction, the following data were obtained:

Time / sec               Totalpressure / atm

0                              0.30

300                          0.50

Calculate the rate constant

(Given: log 2 = 0.301, log3 = 0.4771, log 4 = 0.6021)


Write two factors that affect the rate of reaction.


For a reaction A + B ⟶ P, the rate is given by

Rate = k [A] [B]2

How is the rate of reaction affected if the concentration of B is doubled?


For a reaction : 

(i) Write the order and molecularity of this reaction.

(ii) Write the unit of k.


For the hydrolysis of methyl acetate in aqueous solution, the following results were obtained :

t/s 0 30 60
[CH3COOCH3] / mol L–1 0.60 0.30 0.15

(i) Show that it follows pseudo first order reaction, as the concentration of water remains constant.

(ii) Calculate the average rate of reaction between the time interval 30 to 60 seconds.

(Given log 2 = 0.3010, log 4 = 0.6021)


For a chemical reaction R → P, the variation in the concentration (R) vs. time (t) plot is given as:

(i) Predict the order of the reaction.

(ii) What is the slope of the curve ?

(iii) Write the unit of rate constant for this reaction.


The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume :

SO2Cl2 (g) → SO2 (g) + Cl2 (g)

Experiment Time/s–1 Total pressure/atm
1 0 0.4
2 100 0.7

Calculate the rate constant.

(Given : log 4 = 0.6021, log 2 = 0.3010)


Time required to decompose SO2Cl2 to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.


Mention the factors that affect the rate of a chemical reaction.


A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is (i) doubled (ii) reduced to half?


The following results have been obtained during the kinetic studies of the reaction:

2A + B → C + D

Experiment A/ mol L−1 B/ mol L−1 Initial rate of formation of D/mol L−1 min−1
I 0.1 0.1 6.0 × 10−3
II 0.3 0.2 7.2 × 10−2
III 0.3 0.4 2.40 × 10−2
IV 0.4 0.1  

Determine the rate law and the rate constant for the reaction.


For a reaction R ---> P, half-life (t1/2) is observed to be independent of the initial concentration of reactants. What is the order of reaction?


How does calcination differ from roasting?


Write resonating structures of ozone.


Which of the following statement is true for order of a reaction?


In any unimolecular reaction:

(i) only one reacting species is involved in the rate determining step.

(ii) the order and the molecularity of slowest step are equal to one.

(iii) the molecularity of the reaction is one and order is zero.

(iv) both molecularity and order of the reaction are one.


For a complex reaction:

(i) order of overall reaction is same as molecularity of the slowest step.

(ii) order of overall reaction is less than the molecularity of the slowest step.

(iii) order of overall reaction is greater than molecularity of the slowest step.

(iv) molecularity of the slowest step is never zero or non interger.


Why molecularity is applicable only for elementary reactions and order is applicable for elementary as well as complex reactions?


Match the graph given in Column I with the order of reaction given in Column II. More than one item in Column I may link to the same item of Column II.

  Column I Column II
(i)  
(ii)  (a) 1st order
(iii) (b) Zero-order
(iv)    

Assertion: Order and molecularity are same.

Reason: Order is determined experimentally and molecularity is the sum of the stoichiometric coefficient of rate determining elementary step.


Use Molecular Orbital theory to determine the bond order in each of species, [He2j+ and [He2]2+?


In the presence of a catalyst, the heat evolved or absorbed during the reaction.


For a reaction A + B → products, the rate law is given by: r = `K[A]^(1/2)`. What is the order of reaction?


For a reaction R → p the concentration of reactant change from 0.03 m to 0.02 m in minute, calculate the average rate of the reaction using the unit of second.


For a reaction \[\ce{Cl2l(g) + 2No(g) -> 2NaCl(g)}\] the rate law is expressed as rate= K[Cl2] [No]2 what is the order of the reaction?


For a first order A → B, the reaction rate at reactant concentration of 0.01 m is found to be 2.0 × 10–5. The half-life period of reaction.


The rate of a chemical reaction double for every 10° rise in temperature. If the temperature is raised. by 50°C, the rate of relation by about:-


If the 0.05 molar solution of m+ is replaced by a 0.0025 molar m+ solution, then the magnitude of the cell potential would be


The half-life period of a. substance in a certain enzyme catalysed reaction is 138 s. The time required for the concentration of the substance to fall from 1.28 mol–1 to 0.04 mg L–1 is


At concentration of 0.1 and 0.2 mol L–1 the rates of deem position of a compound were found to be 0.18 and 0.72 mol L–1 m–1. What is the order of the reaction?


The number of molecules of the reactants taking part in a single step of the reaction is indicative of ______.


On heating compound (A) gives a gas (B) which is constituent of air. The gas when treated with H2 in the presence of catalyst gives another gas (C) which is basic in nature, (A) should not be ______.


The following data was obtained for chemical reaction given below at 975 K.

\[\ce{2NO(g) + 2H2(g) -> N2(g) + 2H2O(g)}\]

  [NO] [H2] Rate
  Mol L-1 Mol L-1 Mol L-1 s-1
(1) 8 × 10-5 8 × 10-5 7 × 10-9
(2) 24 × 10-5 8 × 10-5 2.1 × 10-8
(3) 24 × 10-5 32 × 10-5 8.4 × 10-8

The order of the reaction with respect to NO is ______. (Integer answer)


A drop of solution (volume 0.05 ml) contains 3.0 × 10-6 mole of H+. If the rate constant of disappearance of H+ is 1.0 × 107 mole l-1s-1. It would take for H+ in drop to disappear in ______ × 10-9s.


For a chemical reaction starting with some initial concentration of reactant At as a function of time (t) is given by the equation,

`1/("A"_"t"^4) = 2 + 1.5 xx 10^-3` t

The rate of disappearance of [A] is ____ × 10-2 M/sec when [A] = 2 M.

[Given: [At] in M and t in sec.]
[Express your answer in terms of 10-2 M /s]
[Round off your answer if required]


A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is ______. (Use ln 2 = 0.693)


Share
Notifications



      Forgot password?
Use app×