Share

# Find the Mean, Median and Mode of the Following Data: Classes: 0-50 50-100 100-150 150-200 200-250 250-300 300-350 Frequency: 2 3 5 6 5 3 1 - CBSE Class 10 - Mathematics

#### Question

Find the mean, median and mode of the following data:

 Classes: 0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300 300 - 350 Frequency: 2 3 5 6 5 3 1

#### Solution

 Classinterval Mid value()x Frequency(f) fx Cumulative frequency 0 - 50 25 2 50 2 50 - 100 75 3 225 5 100 - 150 125 5 625 10 150 - 200 175 6 1050 16 200 - 250 225 5 1125 21 250 - 300 275 3 825 24 300 - 350 325 1 325 25 N = 25 sumfx=4225

Here, the maximum frequency is 6 so the modal class 150−200.

Therefore,

l = 150

h = 50

f = 6

f1 = 5

f2 = 5

F = 10

Mean =(sumfx)/N=4225/25=169

Thus, the mean of the data is 169.

We have N = 25 then N/2 = 12.5

Median =l+(N/2-F)/fxxh

=150+(12.5-10)/6xx50

=150+2.5/6xx50

=150+125/6

= 150 + 20.83

= 170.83

Thus, the median of the data is 170.83.

Mode =l+(f-f1)/(2f-f1-f2)xxh

=150+(6-5)/(2xx6-5-5)xx50

=150+1/(12-10)xx50

=150+1/2xx50

=150+50/2

= 150 + 25

= 175

Thus, the mode of the data is 175.

Is there an error in this question or solution?

#### APPEARS IN

Solution Find the Mean, Median and Mode of the Following Data: Classes: 0-50 50-100 100-150 150-200 200-250 250-300 300-350 Frequency: 2 3 5 6 5 3 1 Concept: Mode of Grouped Data.
S