ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर A(ΔMNT)AΔ(QRS) हे गुणोत्तर काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

ΔMNT ~ ΔQRS बिंदू T पासून काढलेल्या शिरोलंबाची लांबी 5 असून बिंदू S पासून काढलेल्या शिरोलंबाची लांबी 9 आहे, तर `("A"(Δ"MNT"))/("A"Δ("QRS"))` हे गुणोत्तर काढा.

Advertisements

Solution

ΔMNT ~ ΔQRS ...[पक्ष]

∴ ∠M ≅ ∠Q .....(i) [समरूप त्रिकोणांचे संगत कोन]

ΔMLT व ΔQPS मध्ये,

∠M ≅ ∠Q .....[(i) वरून]

∠MLT ≅ ∠QPS ....[प्रत्येक कोनाचे माप 90°]

∴ ΔMLT ~ ΔQPS ...[समरूपतेची कोको कसोटी]

∴ `"MT"/"QS" = "TL"/"SP"` ....[समरूप त्रिकोणांच्या संगत बाजू]

∴ `"MT"/"QS" = 5/9` ...(ii)

आता, ΔMNT ~ ΔQRS  ...[पक्ष]

∴ `("A"(Δ"MNT"))/("A"(Δ"QRS")) = "MT"^2/"QS"^2` ..[समरूप त्रिकोणांच्या क्षेत्रफळांचे प्रमेय]

= `("MT"/"QS")^2`

= `(5/9)^2`  ....[(ii) वरून]

∴ `("A"(Δ"MNT"))/("A"(Δ"QRS")) = 25/81`

Concept: दोन त्रिकोणांच्या क्षेत्रफळांच्या गुणोत्तराचे गुणधर्म
  Is there an error in this question or solution?
Chapter 1: समरूपता - संकीर्ण प्रश्नसंग्रह 1 [Page 27]

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board [गणित २ भूमिती इयत्ता १० वी]
Chapter 1 समरूपता
संकीर्ण प्रश्नसंग्रह 1 | Q 6. | Page 27

RELATED QUESTIONS

दिलेल्या आकृती मध्ये BC ⊥ AB, AD ⊥ AB, BC = 4, AD = 8 तर `("A(ΔABC)")/("A(ΔADB)")` काढा.


दिलेल्या आकृतीत, PQ ⊥ BC, AD ⊥ BC तर खालील गुणोत्तरे लिहा.

i) `"A(ΔPQB)"/"A(ΔPBC)"`

ii) `"A(ΔPBC)"/"A(ΔABC)"`

iii) `"A(ΔABC)"/"A(ΔADC)"`

iv) `"A(ΔADC)"/"A(ΔPQC)"`


आकृती मध्ये PM = 10 सेमी A(ΔPQS) = 100 चौसेमी A(ΔQRS) = 110 चौसेमी तर NR काढा.


आकृतीमध्ये BD = 8, BC = 12 B-D-C, तर `("A"(Delta"ABC"))/("A"(Delta"ABD"))` = ?


दोन समरूप त्रिकोणांच्या क्षेत्रफळांचे गुणोत्तर 144:49 असेल, तर त्या त्रिकोणांच्या संगत बाजूंचे गुणोत्तर किती?


∆PQR ~ ∆SUV, तर त्या त्रिकोणाच्या एकरूप कोनांच्या जोड्या लिहा.


आकृतीमध्ये, AB लंब BC आणि DC लंब BC, AB = 6, DC = 4, तर `("A"(Delta"ABC"))/("A"(Delta"BCD"))` = ?


त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते. सिद्धता पूर्ण करा.

पक्ष: ∆ABC मध्ये रेषा l || बाजू BC आणि रेषा l ही बाजू AB ला P मध्ये व बाजू AC ला Q मध्ये छेदते.

साध्य: `"AP"/"PB" = "AQ"/"QC"`

रचना: रेख CP व रेख BQ काढा.

सिद्धता:

∆APQ व ∆PQB हे समान उंचीचे त्रिकोण आहेत.

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `square/"PB"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (i)

`("A"(Delta"APQ"))/("A"(Delta"PQC")` = `square/"QC"` ..........[क्षेत्रफळे पायांच्या प्रमाणात] (ii)

∆PQC व ∆PQB यांचा रेख `square` हा समान पाया आहे.

रेख PQ || रेख BC म्हणून: ∆∆APQ व ∆PQB यांची उंची समान आहे.

A(∆PQC) = A(∆ `square`) ........….(iii)

`("A"(Delta"APQ"))/("A"(Delta"PQB")` = `("A"(∆ square))/("A"(∆ square))` ..............[(i), (ii) व (iii]

`"AP"/"PB" = "AQ"/"QC"` ......….[(i) व (ii) वरून]


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`("A"(Delta"ABD"))/("A"(Delta"ABC"))`

 


∆ABC मध्ये, B-D-C आणि BD = 7, BC = 20, तर खालील गुणोत्तर काढा.

`("A"(Delta"ADC"))/("A"(Delta"ABC"))`

 


Share
Notifications



      Forgot password?
Use app×