HSC Science (Computer Science) 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - Prove that ∫√(x^2-a^2)dx=x/2 √(x^2-a^2)-a^2/2 log|x+√t(x^2-a^2)|+c - HSC Science (Computer Science) 12th Board Exam - Mathematics and Statistics

Question

Prove that `int sqrt(x^2-a^2)dx=x/2sqrt(x^2-a^2)-a^2/2log|x+sqrt(x^2-a^2)|+c`

 

Solution

Let  `I=int sqrt(x^2-a^2)dx`

`I=int sqrt(x^2-a^2).1.dx`

`I=sqrt(x^2-a^2).intdx -int[d/dx(sqrt(x^2-a^2))intdx]dx`

`I=xsqrt(x^2-a^2)-int[(2x)/(2sqrt(x^2-a^2))x]dx`

`I=xsqrt(x^2-a^2)-int[(x^2)/(sqrt(x^2-a^2))]dx`

`I=xsqrt(x^2-a^2)-int[(x^2-a^2+a^2)/(sqrt(x^2-a^2))]dx`

`I=xsqrt(x^2-a^2)-int(x^2-a^2)/(sqrt(x^2-a^2))dx+a^2intdx/(sqrt(x^2-a^2)`

`I=xsqrt(x^2-a^2)-intsqrt(x^2-a^2)dx+a^2intdx/(sqrt(x^2-a^2)`

`I=xsqrt(x^2-a^2)-I+a^2intdx/(sqrt(x^2-a^2)`

`2I=xsqrt(x^2-a^2)+a^2log|x+sqrt(x^2-a^2)|+C'`

`I=(xsqrt(x^2-a^2))/2+a^2/2log|x+sqrt(x^2-a^2)|+C^'/2`

`I=(xsqrt(x^2-a^2))/2+a^2/2log|x+sqrt(x^2-a^2)|+C`

 

Is there an error in this question or solution?

APPEARS IN

 2014-2015 (March) (with solutions)
Question 5.2.2 | 4 marks
 2013-2014 (March) (with solutions)
Question 6.2.2 | 4 marks

Video TutorialsVIEW ALL [1]

Reference Material

Solution for question: Prove that ∫√(x^2-a^2)dx=x/2 √(x^2-a^2)-a^2/2 log|x+√t(x^2-a^2)|+c concept: null - Methods of Integration - Integration by Parts. For the courses HSC Science (Computer Science), HSC Science (General) , HSC Arts, HSC Science (Electronics)
S