CBSE (Science) Class 12CBSE
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Examine If Rolle’S Theorem is Applicable to Any of the Following Functions. Can You Say Some Thing About the Converse of Rolle’S Theorem from These Examples? F (X) = [X] for X ∈ [– 2, 2] - CBSE (Science) Class 12 - Mathematics

Question

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?

f (x) = [x] for x ∈ [– 2, 2]

Solution

By Rolle’s Theorem, for a function f: [a, b] → R, if

(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)

(c) f (a) = f (b)

then, there exists some c ∈ (a, b) such that f'(c) = 0

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

f (x) = [x] for x ∈ [– 2, 2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at = −2 and = 2

⇒ f (x) is not continuous in [−2, 2].

  Is there an error in this question or solution?

APPEARS IN

 NCERT Mathematics Textbook for Class 12 Part 1 (with solutions)
Chapter 5: Continuity and Differentiability
Q: 2.2 | Page no. 186
Solution for question: Examine If Rolle’S Theorem is Applicable to Any of the Following Functions. Can You Say Some Thing About the Converse of Rolle’S Theorem from These Examples? F (X) = [X] for X ∈ [– 2, 2] concept: Mean Value Theorem. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts)
S