Maximize Z = −x1 + 2x2
Subject to
\[- x_1 + 3 x_2 \leq 10\]
\[ x_1 + x_2 \leq 6\]
\[ x_1 - x_2 \leq 2\]
\[ x_1 , x_2 \geq 0\]
Solution
First, we will convert the given inequations into equations, we obtain the following equations:
−x1 + 3x2 = 10, x1 + x2 = 6, x1 + x2 = 2, x1 = 0 and x2 = 0
Region represented by −x1 + 3x2 ≤ 10:
The line −x1 + 3x2 = 10 meets the coordinate axes at A(−10, 0) and \[B\left( 0, \frac{10}{3} \right)\] respectively. By joining these points we obtain the line −x1 + 3x2 = 10.
Clearly (0,0) satisfies the inequation −x1 + 3x2 ≤ 10 .So,the region in the plane which contain the origin represents the solution set of the inequation
−x1 + 3x2 ≤ 10.
Region represented by x1 + x2 ≤ 6:
The line x1 + x2 = 6 meets the coordinate axes at C(6, 0) and D(0, 6) respectively. By joining these points we obtain the line x1 + x2 = 6.Clearly (0,0) satisfies the inequation x1 + x2 ≤ 6. So,the region containing the origin represents the solution set of the inequation x1 + x2 ≤ 6.
Region represented by x1− x2 ≤ 2:
The line x1 − x2 = 2 meets the coordinate axes at E(2, 0) and F(0, −2) respectively. By joining these points we obtain the line x1 − x2 = 2.Clearly (0,0) satisfies the inequation x1− x2 ≤ 2. So,the region containing the origin represents the solution set of the inequation x1− x2 ≤ 2.
Region represented by x1 ≥ 0 and x2 ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x1 ≥ 0 and x2 ≥ 0.
The feasible region determined by the system of constraints, −x1 + 3x2 ≤ 10, x1 + x2 ≤ 6, x1− x2 ≤ 2, x1 ≥ 0, and x2 ≥ 0, are as follows.
The corner points of the feasible region are O(0, 0), E(2, 0), H(4, 2), G(2, 4) and \[B\left( 0, \frac{10}{3} \right)\] .
The values of Z at these corner points are as follows.
Corner point | Z = −x1 + 2x2 |
O(0, 0) | −1 × 0 + 2 × 0 = 0 |
E(2, 0) | −1 × 2 + 2 × 0 = −2 |
H(4, 2) | −1 × 4 + 2 × 2 = 0 |
G(2, 4) | −1 × 2 + 2 × 4 = 6 |
\[B\left( 0, \frac{10}{3} \right)\]
|
−1 × 0 + 2 × \[\frac{10}{3}\]= \[\frac{20}{3}\]
|
We see that the maximum value of the objective function Z is \[\frac{20}{3}\]which is at \[B\left( 0, \frac{10}{3} \right)\] .