Sum
Maximize Z = 5x + 3y
Subject to
\[3x + 5y \leq 15\]
\[5x + 2y \leq 10\]
\[ x, y \geq 0\]
Advertisement Remove all ads
Solution
First, we will convert the given inequations into equations, we obtain the following equations:
3x + 5y = 15, 5x + 2y = 10, x = 0 and y = 0
Region represented by 3x + 5y ≤ 15 :
The line 3x + 5y = 15 meets the coordinate axes at A(5,0) and B(0,3) respectively. By joining these points we obtain the line 3x + 5y = 15.
Clearly (0,0) satisfies the inequation 3x + 5y ≤ 15. So,the region containing the origin represents the solution set of the inequation 3x + 5y ≤ 15.
Region represented by 5x + 2y ≤ 10 :
The line 5x + 2y = 10 meets the coordinate axes at C(2,0) and D(0,5) respectively. By joining these points we obtain the line 5x + 2y = 10.
Clearly (0,0) satisfies the inequation 5x + 2y ≤ 10. So,the region containing the origin represents the solution set of the inequation 5x + 2y ≤ 10.
Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.The feasible region determined by the system of constraints, 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, and y ≥ 0, are as follows.
Region represented by 3x + 5y ≤ 15 :
The line 3x + 5y = 15 meets the coordinate axes at A(5,0) and B(0,3) respectively. By joining these points we obtain the line 3x + 5y = 15.
Clearly (0,0) satisfies the inequation 3x + 5y ≤ 15. So,the region containing the origin represents the solution set of the inequation 3x + 5y ≤ 15.
Region represented by 5x + 2y ≤ 10 :
The line 5x + 2y = 10 meets the coordinate axes at C(2,0) and D(0,5) respectively. By joining these points we obtain the line 5x + 2y = 10.
Clearly (0,0) satisfies the inequation 5x + 2y ≤ 10. So,the region containing the origin represents the solution set of the inequation 5x + 2y ≤ 10.
Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations x ≥ 0, and y ≥ 0.The feasible region determined by the system of constraints, 3x + 5y ≤ 15, 5x + 2y ≤ 10, x ≥ 0, and y ≥ 0, are as follows.

The corner points of the feasible region are O(0, 0), C(2, 0),
\[E\left( \frac{20}{19}, \frac{45}{19} \right)\] and B(0, 3).
The values of Z at these corner points are as follows.
Corner point | Z = 5x + 3y |
O(0, 0) | 5 × 0 + 3 × 0 = 0 |
C(2, 0) |
5 × 2 + 3 × 0 = 10
|
\[E\left( \frac{20}{19}, \frac{45}{19} \right)\] |
5x \[\frac{20}{19}\] +3x \[\frac{45}{19}\] = \[\frac{235}{19}\] |
B(0, 3) | 5 0 + 3 × 3 = 9 |
Therefore, the maximum value of Z is
\[\frac{235}{19}\text{ at the point } \left( \frac{20}{19}, \frac{45}{19} \right)\] .Hence, x= \[\frac{20}{19}\] and y =
\[\frac{45}{19}\] is the optimal solution of the given LPP.
Thus, the optimal value of Z is \[\frac{235}{19}\] .
Thus, the optimal value of Z is \[\frac{235}{19}\] .
Concept: Graphical Method of Solving Linear Programming Problems
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads