Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 12
Share
Notifications

View all notifications
Advertisement

Mark the Correct Alternative in the Following Question:Suppose a Random Variable X Follows the Binomial Distribution with Parameters N And P, Where 0 < P < 1. - Mathematics

Login
Create free account


      Forgot password?

Question

Mark the correct alternative in the following question:
Suppose a random variable X follows the binomial distribution with parameters n and p, where 0 < p < 1. If \[\frac{P\left( X = r \right)}{P\left( X = n - r \right)}\] is independent of n and r, then p equals

Options
  • \[\frac{1}{2}\]

  • \[\frac{1}{3}\]

  • \[\frac{1}{5} \]

  • \[\frac{1}{7}\]

Solution

\[\text{ As, X follows the binomial distribution with parameters n and p, where 0 } < p < 1\]

\[\text{ So } , P\left( X = r \right) =^{n}{}{C}_r p^r q^\left( n - r \right) , \text{ where  } r = 0, 1, 2, 3, . . . ,\]

 \[\text{ Now } , \]

\[\frac{P\left( X = r \right)}{P\left( X = n - r \right)} = \frac{^{n}{}{C}_r p^r q^\left( n - r \right)}{^{n}{}{C}_\left( n - r \right) p^\left( n - r \right) q^r} = p^\left( 2r - n \right) q^\left( n - 2r \right) \]

\[\text{ As } , \frac{P\left( X = r \right)}{P\left( X = n - r \right)}\text{  is independent of n and r } \]

\[\text{ So, p } = q \left[ \text{ Since, }  \frac{P\left( X = r \right)}{P\left( X = n - r \right)} = p^\left( 2r - n \right) \  p^\left( n - 2r \right) = p^0 = 1 \right]\]

\[\text{ This is only possible if p } = \frac{1}{2}\]

\[ \therefore p = \frac{1}{2}\]

  Is there an error in this question or solution?
Advertisement

APPEARS IN

 RD Sharma Solution for Mathematics for Class 12 (Set of 2 Volume) (2018 (Latest))
Chapter 33: Binomial Distribution
MCQ | Q: 27 | Page no. 29
Advertisement

Video TutorialsVIEW ALL [1]

Mark the Correct Alternative in the Following Question:Suppose a Random Variable X Follows the Binomial Distribution with Parameters N And P, Where 0 < P < 1. Concept: Bernoulli Trials and Binomial Distribution.
Advertisement
View in app×