Advertisement Remove all ads

Mark the Correct Alternative in of the Following: If F(X) = X Sinx, Then F ′ ( π 2 ) = - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ

Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 

Options

  • 1            

  • −1 

  • \[\frac{1}{2}\] 

Advertisement Remove all ads

Solution

f(x) = x sinx
Differentiating both sides with respect to x, we get 

\[f'\left( x \right) = x \times \frac{d}{dx}\left( \sin x \right) + \sin x \times \frac{d}{dx}\left( x \right) \left( \text{ Product rule } \right)\]
\[ = x \times \cos x + \sin x \times 1\]
\[ = x \cos x + \sin x\] 

Putting \[x = \frac{\pi}{2}\] 

 we get \[f'\left( \frac{\pi}{2} \right) = \frac{\pi}{2} \times \cos\left( \frac{\pi}{2} \right) + \sin\left( \frac{\pi}{2} \right)\]
\[ = \frac{\pi}{2} \times 0 + 1\]
\[ = 1\]

Hence, the correct answer is option (b).

Concept: The Concept of Derivative - Algebra of Derivative of Functions
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 30 Derivatives
Q 12 | Page 48

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×