MCQ

Mark the correct alternative in each of the following:

In any ∆ABC, the value of \[2ac\sin\left( \frac{A - B + C}{2} \right)\] is

#### Options

\[a^2 + b^2 - c^2\]

\[c^2 + a^2 - b^2\]

\[b^2 - c^2 - a^2\]

\[c^2 - a^2 - b^2\]

Advertisement Remove all ads

#### Solution

In ∆ABC,

\[A + B + C = \pi \left( \text{ Angle sum property } \right)\]

\[ \Rightarrow A + C = \pi - B\]

\[\therefore 2ac\sin\left( \frac{A - B + C}{2} \right)\]

\[ = 2ac\sin\left( \frac{\pi - 2B}{2} \right)\]

\[ = 2ac\sin\left( \frac{\pi}{2} - B \right)\]

\[ = 2ac\cos B\]

\[= 2ac\left( \frac{c^2 + a^2 - b^2}{2ca} \right) \left( \text{ Using cosine rule } \right)\]

\[ = c^2 + a^2 - b^2\]

Hence, the correct answer is option (b).

Concept: Sine and Cosine Formulae and Their Applications

Is there an error in this question or solution?

Advertisement Remove all ads

#### APPEARS IN

Advertisement Remove all ads

Advertisement Remove all ads