Advertisement Remove all ads

Making use of the cube root table, find the cube root 7800 - Mathematics

Sum

Making use of the cube root table, find the cube root
7800

Advertisement Remove all ads

Solution

We have: \[7800 = 78 \times 100\]

∴ \[\sqrt[3]{7800} = \sqrt[3]{78 \times 100} = \sqrt[3]{78} \times \sqrt[3]{100}\]

By the cube root table, we have: \[\sqrt[3]{78} = 4 . 273 \text{ and }  \sqrt[3]{100} = 4 . 642\]

\[\sqrt[3]{7800} = \sqrt[3]{78} \times \sqrt[3]{100} = 4 . 273 \times 4 . 642 = 19 . 835 (\text{ upto three decimal places} )\]

Thus, the answer is 19.835

 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 4 Cubes and Cube Roots
Exercise 4.5 | Q 7 | Page 36
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×