Advertisement Remove all ads

Making use of the cube root table, find the cube root 7342 . - Mathematics

Sum

Making use of the cube root table, find the cube root
7342 .

Advertisement Remove all ads

Solution

We have: \[7300 < 7342 < 7400 \Rightarrow \sqrt[3]{7000} < \sqrt[3]{7342} < \sqrt[3]{7400}\]

From the cube root table, we have: 

\[\sqrt[3]{7300} = 19 . 39 \text{ and }  \sqrt[3]{7400} = 19 . 48\]

For the difference (7400 - 7300), i.e., 100, the difference in values

\[= 19 . 48 - 19 . 39 = 0 . 09\]
∴  For the difference of (7342 - 7300), i.e., 42, the difference in the values
 
\[= \frac{0 . 09}{100} \times 42 = 0 . 0378 = 0 . 037\]
∴ \[\sqrt[3]{7342} = 19 . 39 + 0 . 037 = 19 . 427\]
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 8 Maths
Chapter 4 Cubes and Cube Roots
Exercise 4.5 | Q 13 | Page 36
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×