Advertisement Remove all ads

∫ Log 10 X D X - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum
\[\int \log_{10} x\ dx\]
Advertisement Remove all ads

Solution

\[\int \log_{10} x \text{ dx }\]
\[ = \int\frac{\log x}{\log 10}dx\]
\[ = \frac{1}{\log 10}\int 1_{} \cdot \text{ log x  dx }\]
`  " Taking log x as the first function and 1 as the second function " `
\[ = \frac{1}{\log 10}\left[ \log x \int\text{ 1 dx} - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\text{ 1 dx }\right\}dx \right]\]


\[ = \frac{1}{\log 10}\left[ \log x \cdot x - \int\frac{1}{x} \cdot \text{ x dx } \right]\]
\[ = \frac{1}{\log 10}\left[ x \log x - x \right] + C\]
\[ = \frac{1}{\log 10}\left[ x\left( \log x - 1 \right) \right] + C\]

Concept: Indefinite Integral Problems
  Is there an error in this question or solution?

APPEARS IN

RD Sharma Class 12 Maths
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 25 | Page 133

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×