Advertisement Remove all ads

Lim X → a Cos X − Cos a √ X − √ a - Mathematics

\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]

Advertisement Remove all ads

Solution

\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{\sqrt{x} - \sqrt{a}}\]
\[\text{ Dividing the numerator and the denominator by  }\sqrt{x} + \sqrt{a}: \]
\[ - 2 \lim_{x \to a} \frac{\left( \sin \left( \frac{x + a}{2} \right)\sin \left( \frac{x - a}{2} \right) \right)}{2\left( \frac{x - a}{2} \right)}\left( \sqrt{x} + \sqrt{a} \right)\]
\[ = - 2 \lim_{x \to a} \sin \left( \frac{x + a}{2} \right) \times \frac{\sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)}\left( \sqrt{x} + \sqrt{a} \right)\]
\[ \Rightarrow - 2 \sin \left( \frac{2a}{2} \right) \left( \frac{\sqrt{a} + \sqrt{a}}{2} \right)\]
\[ = - 2\sqrt{a} \sin a\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.8 | Q 14 | Page 62
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×