\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)} \left[ \because \cos A - \cos B - 2 \sin \left( \frac{A - B}{2} \right) \sin \left( \frac{A + B}{2} \right) \right]\]
\[ = \lim_{x \to a} - \sin \left( \frac{x + a}{2} \right) \left[ \because \lim_\theta \to a \sin\frac{\left( \theta - a \right)}{\left( \theta - a \right)} = 1 \right]\]
\[ = - \sin \left( \frac{2a}{2} \right)\]
\[ \Rightarrow - \sin a\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)} \left[ \because \cos A - \cos B - 2 \sin \left( \frac{A - B}{2} \right) \sin \left( \frac{A + B}{2} \right) \right]\]
\[ = \lim_{x \to a} - \sin \left( \frac{x + a}{2} \right) \left[ \because \lim_\theta \to a \sin\frac{\left( \theta - a \right)}{\left( \theta - a \right)} = 1 \right]\]
\[ = - \sin \left( \frac{2a}{2} \right)\]
\[ \Rightarrow - \sin a\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads