Advertisement Remove all ads

Lim X → π 4 F ( X ) − F ( π 4 ) X − π 4 , - Mathematics

\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]

Advertisement Remove all ads

Solution

\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}}\]
\[ = \lim_{h \to 0} \frac{f\left( \frac{\pi}{4} + h \right) - f\left( \frac{\pi}{4} \right)}{\frac{\pi}{4} + h - \frac{\pi}{4}}\]
\[\text{ It is given that } f\left( x \right) = \sin 2x . \]
\[ \Rightarrow \lim_{h \to 0} \frac{\sin \left( \frac{\pi}{2} + 2h \right) - \sin \left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\cos 2h - 1}{h}\]
\[ = \lim_{h \to 0} - 2\left( \frac{\sin^2 h}{h \times h} \right) \left( h \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( - 2h \right) = 0\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.8 | Q 19 | Page 62
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×