Advertisement Remove all ads

lim x → π 4 2 − c o s e c 2 x 1 − cot x - Mathematics

\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to \frac{\pi}{4}} \left[ \frac{2 - {cosec}^2 x}{1 - \cot x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{2 - \left( 1 + \cot^2 x \right)}{1 - \cot x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{1 - \cot^2 x}{1 - \cot x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \cot x \right) \left( 1 + \cot x \right)}{\left( 1 - \cot x \right)} \right]\]
\[ = 1 + \cot \left( \frac{\pi}{4} \right)\]
\[ = 1 + 1\]
\[ = 2\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.9 | Q 4 | Page 65
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×