\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to 2} \left[ \frac{x^4 - 16}{x - 2} \right]\]
\[\text{ It is of the form } \frac{0}{0} . \]
\[ \lim_{x \to 2} \left[ \frac{\left( x^2 \right)^2 - \left( 4 \right)^2}{x - 2} \right]\]
\[ = \lim_{x \to 2} \left[ \frac{\left( x^2 - 4 \right)\left( x^2 + 4 \right)}{x - 2} \right]\]
\[ = \lim_{x \to 2} \left[ \frac{\left( x - 2 \right)\left( x + 2 \right)\left( x^2 + 4 \right)}{x - 2} \right]\]
\[ = \left( 2 + 2 \right)\left( 2^2 + 4 \right)\]
\[ = 32\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads