Advertisement Remove all ads

Lim X → 2 X 3 + 3 X 2 − 9 X − 2 X 3 − X − 6 - Mathematics

\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 2} \left[ \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6} \right]\] It is of the form \[\frac{0}{0} .\] 

Let p(x) = x3 + 3x\[-\]9x\[-\] 2
p(2) = 8 + 12 \[-\]18 \[-\]2
       = 0 

Now, 

\[\left( x - 2 \right)\] is a factor of p(x). 

Let q(x) = x3 – x – 6
q(2) = 8 – 2 – 6
       = 0

\[Now, \left( x - 2 \right)\]is a factor of q(x). 

\[\Rightarrow \lim_{x \to 2} \left[ \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6} \right]\]
\[ = \lim_{x \to 2} \left[ \frac{\left( x - 2 \right)\left( x^2 + 5x + 1 \right)}{\left( x - 2 \right)\left( x^2 + 2x + 3 \right)} \right]\]
\[ = \lim_{x \to 2} \left[ \frac{x^2 + 5x + 1}{x^2 + 2x + 3} \right]\]
\[ = \frac{(2 )^2 + 5 \times 2 + 1}{\left( 2 \right)^2 + 2 \times 2 + 3}\]
\[ = \frac{4 + 10 + 1}{4 + 4 + 3}\]
\[ = \frac{15}{11}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.3 | Q 26 | Page 23
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×