Advertisement Remove all ads

Lim X → 2 X − 2 √ X − √ 2 - Mathematics

\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 2} \left[ \frac{x - 2}{\sqrt{x} - \sqrt{2}} \right]\] It is of the form \[\frac{0}{0}\] 

⇒ \[\lim_{x \to 2} \left[ \frac{\left( \sqrt{x} \right)^2 - \left( \sqrt{2} \right)^2}{x - \sqrt{2}} \right]\] 

= \[\lim_{x \to 2} \left[ \frac{\left( \sqrt{x} - \sqrt{2} \right)\left( \sqrt{x} + \sqrt{2} \right)}{\left( x - \sqrt{2} \right)} \right]\]

=  \[\sqrt{2} + \sqrt{2}\] 

= \[2\sqrt{2}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.4 | Q 14 | Page 28
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×