Advertisement Remove all ads

# Lim X → π √ 2 + Cos X − 1 ( π − X ) 2 - Mathematics

$\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}$

Advertisement Remove all ads

#### Solution

$\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}$
$= \lim_{h \to 0} \frac{\sqrt{2 + \cos \left( \pi - h \right)} - 1}{\left( \pi - \left( \pi - h \right) \right)^2}$
$= \lim_{h \to 0} \left( \frac{\sqrt{2 - \cos h} - 1}{h^2} \right) \times \frac{\sqrt{2 - \cos h} + 1}{\sqrt{2 - \cos h} + 1}$
$= \lim_{h \to 0} \frac{2 - \cos h - 1}{h^2 \left( \sqrt{2 - \cos h} + 1 \right)}$
$= \lim_{h \to 0} \frac{1 - \cos h}{h^2 \left( \sqrt{2 - \cos h} + 1 \right)}$
$= \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{4 \times \frac{h^2}{4} \times \left[ \sqrt{2 - \cos h} + 1 \right]}$
$= \frac{1 \times 1^2}{2 \left( \sqrt{2 - 1} + 1 \right)}$
$= \frac{1}{4}$

Is there an error in this question or solution?
Advertisement Remove all ads

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.8 | Q 31 | Page 63
Advertisement Remove all ads

#### Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications

Forgot password?