\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to 0} \left[ \frac{a^x + a^{- x} - 2}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} \right)^2 + \left( a^{- \frac{x}{2}} \right)^2 - 2 a^\frac{x}{2} \cdot a^{- \frac{x}{2}}}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} - a^{- \frac{x}{2}} \right)^2}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} - \frac{1}{a^\frac{x}{2}} \right)^2}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^x - 1 \right)^2}{x^2} \times \frac{1}{\left( a^\frac{x}{2} \right)^2} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{a^x - 1}{x} \right)^2 \times \frac{1}{a^x} \right]\]
\[ = \frac{\left( \log a \right)^2}{a^0}\]
\[ = \left( \log a \right)^2\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} \right)^2 + \left( a^{- \frac{x}{2}} \right)^2 - 2 a^\frac{x}{2} \cdot a^{- \frac{x}{2}}}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} - a^{- \frac{x}{2}} \right)^2}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^\frac{x}{2} - \frac{1}{a^\frac{x}{2}} \right)^2}{x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^x - 1 \right)^2}{x^2} \times \frac{1}{\left( a^\frac{x}{2} \right)^2} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{a^x - 1}{x} \right)^2 \times \frac{1}{a^x} \right]\]
\[ = \frac{\left( \log a \right)^2}{a^0}\]
\[ = \left( \log a \right)^2\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads