Advertisement Remove all ads

Lim X → 0 X ( 2 X − 1 ) 1 − Cos X - Mathematics

\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 0} \left[ \frac{x\left( 2^x - 1 \right)}{1 - \cos x} \right]\] 

Dividing the numerator and the denominator by x2

\[= \lim_{x \to 0} \left[ \left( \frac{2^x - 1}{x} \right) \times \frac{x^2}{1 - \cos x} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{2^x - 1}{x} \right) \times \frac{x^2}{2 \sin^2 \frac{x}{2}} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{2^x - 1}{x} \right) \times \frac{\frac{x^2}{4} \times 4}{2 \sin^2 \left( \frac{x}{2} \right)} \right]\]
\[ = \left( \log 2 \right) \times \frac{4}{2} \times \frac{1}{1^2}\]
\[ = 2 \log 2\]
\[ = \log \left( 2 \right)^2 \]
\[ = \log 4\] 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 25 | Page 71
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×