\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to 0} \left[ \frac{\tan 3x - 2x}{3x - \sin^2 x} \right]\] Dividing the numerator and the denominator by x:
\[\lim_{x \to 0} \left[ \frac{\frac{\tan 3x}{x} - 2}{3 - \frac{\sin^2 x}{x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\tan 3x}{3x} \times 3 - 2}{3 - \left( \frac{\sin x}{x} \right) \times \sin x} \right]\]
\[ = \frac{3 - 2}{3 - 1 \times 0} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1, \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = \frac{1}{3}\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads