Advertisement Remove all ads

Lim X → 0 Tan 3 X − 2 X 3 X − Sin 2 X - Mathematics

\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 0} \left[ \frac{\tan 3x - 2x}{3x - \sin^2 x} \right]\] Dividing the numerator and the denominator by x

\[\lim_{x \to 0} \left[ \frac{\frac{\tan 3x}{x} - 2}{3 - \frac{\sin^2 x}{x}} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\frac{\tan 3x}{3x} \times 3 - 2}{3 - \left( \frac{\sin x}{x} \right) \times \sin x} \right]\]
\[ = \frac{3 - 2}{3 - 1 \times 0} \left[ \because \lim_{x \to 0} \frac{\tan x}{x} = 1, \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = \frac{1}{3}\] 

 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.7 | Q 25 | Page 50
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×