Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Lim X → 0 a M X − B N X Sin K X - Mathematics

\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]

Advertisement Remove all ads

Solution

\[\lim_{x \to 0} \left[ \frac{a^{mx} - b^{nx}}{\sin \left( kx \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^{mx} - 1 \right) - \left( b^{nx} - 1 \right)}{\sin kx} \right]\]
\[\text{ Dividing the numerator and the denomiantor by } x:\]
\[ = \lim_{x \to 0} \left[ \frac{m\left( \frac{a^{mx} - 1}{mx} \right) - n\left( \frac{b^{nx} - 1}{nx} \right)}{k \times \frac{\sin kx}{kx}} \right]\]
\[ = \frac{\left( m \log a - n \log b \right)}{k \times 1}\]
\[ = \frac{1}{k} \left[ \log \left( a \right)^m - \log \left( b \right)^n \right]\]
\[ = \frac{1}{k} \log \left( \frac{a^m}{b^n} \right)\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 13 | Page 71
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×