Advertisement Remove all ads

Lim X → 0 Log ( 3 + X ) − Log ( 3 − X ) X - Mathematics

\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 0} \left[ \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( \frac{3 + x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{3 + x}{3 - x} - 1 \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{3 + x - 3 + x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{2x}{3 - x} \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\log \left( 1 + \frac{2x}{3 - x} \right)}{\left( \frac{2x}{3 - x} \right) \times \frac{3 - x}{2}} \right]\]
\[ = \frac{1 \times 2}{3 - 0}\]
\[ = \frac{2}{3}\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 23 | Page 71
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×