Advertisement Remove all ads

Lim X → 0 Cos 3 X − Cos 7 X X 2 - Mathematics

\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 

Advertisement Remove all ads

Solution

\[\lim_{x \to 0} \left[ \frac{\cos 3x - \cos 7x}{x^2} \right]\] 

\[= \lim_{x \to 0} \left[ \frac{- 2\sin\left( \frac{3x + 7x}{2} \right)\sin\frac{\left( 3x - 7x \right)}{2}}{x^2} \right] \left[ \cos C - \cos D = - 2\sin\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right) \right]\]

\[ = \lim_{x \to 0} \left[ \frac{- 2\sin 5x \sin \left( - 2x \right)}{x^2} \right]\]

\[ = \lim_{x \to 0} \left[ \frac{2\sin 5x \sin 2x}{x^2} \right] \left[ \because \sin\left( - \theta \right) = - \sin\theta \right]\]

\[ = 2 \lim_{x \to 0} \left[ \frac{\sin 5x}{5x} \times \frac{\sin 2x}{2x} \right] \times 5 \times 2\]

\[\]

\[ = 2 \times 5 \times 2\]

\[ = 20\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.7 | Q 15 | Page 50
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×